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1,3-Dialkylidenecyclobutanes are key precursors for the forma-
tion of non-Kékulé hydrocarbon diradicals with triplet ground
state: the 1,3-dialkylidenecyclobutane-2,4-diyls.1,2 This transforma-
tion attracts interest because of the large positive bond enthalpy
additivity deviation3 and because diradicals have potential applica-
tions in material science4 as paramagnetic building blocks for the
formation of organic magnetic materials and polymers.1,2 1,3-
Dimethylenecyclobutanes lead to 1,3-diradicals in low-temperature
matrixes,5 in gas phase with atomic oxygen anion,6 and from bicyclo
[1.1.0] butanes.7

However, their synthesis is not straightforward. The current
preparation of the simplest member involves a six-step synthesis
from allene and acrylonitrile.8 The simplest access would result
from [2 + 2] allene thermal cyclodimerization. However, it leads
to a 1,2-isomer with small amounts of the 1,3-isomer (85:15).9

Dimerization of substituted allenes gives mixtures of a number of
dimers and oligomers.10 Only some specific examples of substituted
1,3-dimethylenecyclobutanes are known, namely the 2,4-disulfone11

and 1,3-bispyridinylidene derivatives.7

Recently, Ni(PPh3)4 was revealed to catalyze the [2+ 2]
cycloaddition of electron-deficient allenes to give only conjugated
1,2-dimethylenecyclobutane isomers.12

Among functional allenes, allenylboronates have never been
involved in catalytic transformations despite their potential for
formation of small cycle intermediates, with retention of the sp2

C-B bond, allowing consecutive C-C bond formation. Our interest
in regioselective catalytic oxidative couplings of functional alkynes
and alkenes at electron-rich ruthenium precatalysts13 led us to
explore the allenylboronate reactivity.

We wish to report the first direct access to rigid 1,3-dimethyl-
enecyclobutane derivatives via an original head-to-head [2+ 2]
cyclodimerization of allenyl boronate, catalyzed by a ruthenium
catalyst. Although global yields are still moderate, consecutive
palladium-catalyzed C-C couplings open a route tosubstituted1,3-
dimethylenecyclobutanes (Scheme 1).

The allenyl boronate1, CH2dCdCHB(pin) (pin ) pinacol),12

was reacted in the presence of 5 mol % of [Cp*RuCl(COD)] (2) in
refluxing dioxane at 100°C. The reaction proceeds in 2 h toreach
the full conversion of the allene, affording [2+ 2] cyclodimerization
products (Scheme 2).

GC mass of the crude product confirms the formation of two
isomeric products3a+ 3b (m/z) 332) in a 2:1 ratio, corresponding
to the double mass of the starting allenyl boronate. NMR analysis
shows the existence of dimethylenecyclobutane structures, a result

of the regioselective head-to-head dimerization of1 by [2 + 2]
coupling of the terminal double bonds.

The isolated yield of3a + 3b varies between 40 and 60%.
Decomposition of3a + 3b with concomitant release of pinacol is
always observed, hindering the separation of the two isomers. In
search of more stable products, we reacted the mixture of3a + 3b
with iodobenzene in the presence of Pd(PPh3)4 under Suzuki
reaction conditions.

To prevent yield loss during workup and overcome the low
stability of boronate dimers3a + 3b, both reactions were carried
out sequentially in one-pot: first the ruthenium catalysis to prepare
the dimeric product was performed, and then the palladium catalyst,
aryl iodide, and a base were added.

Taking advantage of the good stability of pinacol boronate esters
in water, we employed an aqueous solution of K2CO3 as a base,
with catalyst Pd(PPh3)4 (1%) and phenyl iodide in THF. After
heating for 2 h at 80°C, 1H NMR analysis of the reaction mixture
showed the presence of the two phenyl-substituted isomers4a +
4b (Scheme 3). Recrystallization allowed us to isolate the major
isomer4a in 34% global yield.

The X-ray structure of4a was determined, establishing the 1,3-
dialkylidenecyclobutane nature with anE,E-configuration of the
two exocyclic double bonds (Figure 1).

The dimethylenecyclobutane framework is planar (torsion angles
C1′C2C1C3 ) 179.2°, C1C2C1′C2′ ) 0.0°), whereas the phenyl rings
only slightly deviate from the planarity (torsion angle C4C3C1C2,

† CNRS, Organome´talliques et Catalyse.
‡ CNRS, Groupe Matie`re Condense´e et Matériaux.

Scheme 1

Scheme 2

Scheme 3

Published on Web 07/30/2005

11582 9 J. AM. CHEM. SOC. 2005 , 127, 11582-11583 10.1021/ja051930r CCC: $30.25 © 2005 American Chemical Society



3.3°). This is in agreement with the early studies on gas-phase
electron diffraction of 1,3-dimethylenecyclobutane.8

The theoretical and chemical interest of these species (1,2- and
1,3-dimethylenecyclobutane) has recently led to prediction of its
structural and spectroscopic properties.14 Bond angles and lengths
of the phenyl-substituted compound4a are in good agreement.

Some insight into the nature of the minor isomer4b was gained
by NMR. 1H and13C{1H} NMR data of4b only differ from 4a in
the nonequivalence of the cyclobutane CH2 signals. The lack of a
symmetry plane perpendicular to the molecular plane supports a
1,3-(Z,Z)-dimethylenecyclobutane structure, discarding the presence
of the 1,2-isomer.12

The Suzuki reaction of3a+ 3b with p-chloroiodobenzene gives
the correspondingp-chloro-substituted dimers5a + 5b. The major
isomer5a was isolated by recrystallization in 25% global yield
(Scheme 3).

Other Pd-catalyzed C-C coupling reactions are feasible. The
recently reported oxygen-promoted Pd(II) catalysis for cross-
coupling of alkenylboronic compounds and olefins was attempted.15

Compounds3a + 3b were reacted with styrene in the presence of
Pd(OAc)2/O2 and Na2CO3 in DMA for 3 h at room temperature,
giving 1,3-dipropenylidenecyclobutane6 (only one isomer was
isolated) as a red solid in 15% global yield (Scheme 4).

Thus, although yields are moderate, the sequential ruthenium/
palladium catalysis allows us to introduce aryl or alkenyl groups
to reach a new family of 1,3-dimethylenecyclobutanes.

Allene MeCHdCdCHB(pin) (pin) pinacol) was treated under
the same conditions as1, giving a complex mixture of stereo-
isomers. The introduction of substituents on the allene carbon chain
is known to modify both reactivity and selectivity.12

The ability of [Cp*RuCl(COD)]2 to dimerize allene1 to give
1,3-dimethylenecyclobutane contrasts well with the codimerization
of allene with unsaturated ketones by [CpRuCl(COD)]/CeCl3, which
involves the substituted allene double bond.16

The observed allene dimerization regioselectivity benefits from
both pinacol boronate and bulky C5Me5 group nature. A direct
access to4a from phenylallene dimerization catalyzed by2 gives
a mixture of4a, 4b, and 1,2-diphenyl-3,4-dimethylenecyclobutane
717 (in 2:1:3 ratio), showing a lack of regioselectivity (head-to-
head versus tail-to-tail coupling) with respect to allenyl boronate
1.

To obtain a better regioselectivity with phenylallene dimerization,
the use of a more sterically hindered ruthenium site was attempted
(Scheme 4). The reaction of phenylallene in the presence of 10
mol % [Cp*Ru(PPh3)(MeCN)2][PF6] (8) in DMF at 110°C for 6
h gave the tail-to-tail coupling compound7, isolated in 44% yield.

In conclusion, a new route to the previously inaccessible
disubstituted 1,3-dimethylenecyclobutanes has been opened by
sequential ruthenium/palladium catalysis from readily available
materials by a simple experimental protocol. Ongoing studies aim
to develop the functionalization of dimer3 through the rich boron
chemistry and search the access to new polymeric materials bearing
rigid cyclobutane units.
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Figure 1. ORTEP drawing of the molecular structure of4a.

Scheme 4
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