

## Communication

# An Opened Route to 1,3-Dimethylenecyclobutanes via Sequential Ruthenium-Catalyzed [2 + 2] Cycloaddition of Allenyl Boronate and Palladium Suzuki Coupling

Emilio Bustelo, Carine Gurot, Alain Hercouet, Bertrand Carboni, Loc Toupet, and Pierre H. Dixneuf *J. Am. Chem. Soc.*, **2005**, 127 (33), 11582-11583• DOI: 10.1021/ja051930r • Publication Date (Web): 30 July 2005

Downloaded from http://pubs.acs.org on March 25, 2009



### More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML





Published on Web 07/30/2005

#### An Opened Route to 1,3-Dimethylenecyclobutanes via Sequential Ruthenium-Catalyzed [2 + 2] Cycloaddition of Allenyl Boronate and Palladium Suzuki Coupling

Emilio Bustelo,<sup>†</sup> Carine Guérot,<sup>†</sup> Alain Hercouet,<sup>†</sup> Bertrand Carboni,<sup>†</sup> Loïc Toupet,<sup>‡</sup> and Pierre H. Dixneuf\*,†

Institut de Chimie de Rennes, UMR 6509 Université de Rennes 1 - CNRS, Organométalliques et Catalyse, and UMR 6626 Université de Rennes 1 - CNRS, Groupe Matière Condensée et Matériaux, Campus de Beaulieu, 35042 Rennes, France

Received March 25, 2005; E-mail: pierre.dixneuf@univ-rennes1.fr

1,3-Dialkylidenecyclobutanes are key precursors for the formation of non-Kékulé hydrocarbon diradicals with triplet ground state: the 1,3-dialkylidenecyclobutane-2,4-diyls.<sup>1,2</sup> This transformation attracts interest because of the large positive bond enthalpy additivity deviation<sup>3</sup> and because diradicals have potential applications in material science<sup>4</sup> as paramagnetic building blocks for the formation of organic magnetic materials and polymers.<sup>1,2</sup> 1,3-Dimethylenecyclobutanes lead to 1,3-diradicals in low-temperature matrixes,<sup>5</sup> in gas phase with atomic oxygen anion,<sup>6</sup> and from bicyclo [1.1.0] butanes.7

However, their synthesis is not straightforward. The current preparation of the simplest member involves a six-step synthesis from allene and acrylonitrile.8 The simplest access would result from [2 + 2] allene thermal cyclodimerization. However, it leads to a 1,2-isomer with small amounts of the 1,3-isomer (85:15).9 Dimerization of substituted allenes gives mixtures of a number of dimers and oligomers.<sup>10</sup> Only some specific examples of substituted 1,3-dimethylenecyclobutanes are known, namely the 2,4-disulfone<sup>11</sup> and 1,3-bispyridinylidene derivatives.7

Recently, Ni(PPh<sub>3</sub>)<sub>4</sub> was revealed to catalyze the [2 + 2]cycloaddition of electron-deficient allenes to give only conjugated 1,2-dimethylenecyclobutane isomers.<sup>12</sup>

Among functional allenes, allenylboronates have never been involved in catalytic transformations despite their potential for formation of small cycle intermediates, with retention of the sp<sup>2</sup> C-B bond, allowing consecutive C-C bond formation. Our interest in regioselective catalytic oxidative couplings of functional alkynes and alkenes at electron-rich ruthenium precatalysts<sup>13</sup> led us to explore the allenylboronate reactivity.

We wish to report the first direct access to rigid 1,3-dimethylenecyclobutane derivatives via an original head-to-head [2 + 2]cyclodimerization of allenyl boronate, catalyzed by a ruthenium catalyst. Although global yields are still moderate, consecutive palladium-catalyzed C-C couplings open a route to substituted 1,3dimethylenecyclobutanes (Scheme 1).

The allenvl boronate 1,  $CH_2 = C = CHB(pin)$  (pin = pinacol),<sup>12</sup> was reacted in the presence of 5 mol % of [Cp\*RuCl(COD)] (2) in refluxing dioxane at 100 °C. The reaction proceeds in 2 h to reach the full conversion of the allene, affording [2 + 2] cyclodimerization products (Scheme 2).

GC mass of the crude product confirms the formation of two isomeric products 3a + 3b (m/z = 332) in a 2:1 ratio, corresponding to the double mass of the starting allenyl boronate. NMR analysis shows the existence of dimethylenecyclobutane structures, a result





Scheme 1



of the regioselective head-to-head dimerization of 1 by [2 + 2]coupling of the terminal double bonds.

The isolated yield of 3a + 3b varies between 40 and 60%. Decomposition of 3a + 3b with concomitant release of pinacol is always observed, hindering the separation of the two isomers. In search of more stable products, we reacted the mixture of 3a + 3bwith iodobenzene in the presence of Pd(PPh<sub>3</sub>)<sub>4</sub> under Suzuki reaction conditions.

To prevent yield loss during workup and overcome the low stability of boronate dimers 3a + 3b, both reactions were carried out sequentially in one-pot: first the ruthenium catalysis to prepare the dimeric product was performed, and then the palladium catalyst, aryl iodide, and a base were added.

Taking advantage of the good stability of pinacol boronate esters in water, we employed an aqueous solution of K<sub>2</sub>CO<sub>3</sub> as a base, with catalyst Pd(PPh<sub>3</sub>)<sub>4</sub> (1%) and phenyl iodide in THF. After heating for 2 h at 80 °C, <sup>1</sup>H NMR analysis of the reaction mixture showed the presence of the two phenyl-substituted isomers 4a +4b (Scheme 3). Recrystallization allowed us to isolate the major isomer 4a in 34% global yield.

The X-ray structure of 4a was determined, establishing the 1,3dialkylidenecyclobutane nature with an E,E-configuration of the two exocyclic double bonds (Figure 1).

The dimethylenecyclobutane framework is planar (torsion angles  $C_{1'}C_{2}C_{1}C_{3} = 179.2^{\circ}, C_{1}C_{2}C_{1'}C_{2'} = 0.0^{\circ})$ , whereas the phenyl rings only slightly deviate from the planarity (torsion angle  $C_4C_3C_1C_2$ ,

<sup>&</sup>lt;sup>†</sup> CNRS, Organométalliques et Catalyse. <sup>‡</sup> CNRS, Groupe Matière Condensée et Matériaux.



Figure 1. ORTEP drawing of the molecular structure of 4a.

Scheme 4



3.3°). This is in agreement with the early studies on gas-phase electron diffraction of 1,3-dimethylenecyclobutane.<sup>8</sup>

The theoretical and chemical interest of these species (1,2- and 1,3-dimethylenecyclobutane) has recently led to prediction of its structural and spectroscopic properties.<sup>14</sup> Bond angles and lengths of the phenyl-substituted compound **4a** are in good agreement.

Some insight into the nature of the minor isomer **4b** was gained by NMR. <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR data of **4b** only differ from **4a** in the nonequivalence of the cyclobutane CH<sub>2</sub> signals. The lack of a symmetry plane perpendicular to the molecular plane supports a 1,3-(*Z*,*Z*)-dimethylenecyclobutane structure, discarding the presence of the 1,2-isomer.<sup>12</sup>

The Suzuki reaction of 3a + 3b with *p*-chloroiodobenzene gives the corresponding *p*-chloro-substituted dimers 5a + 5b. The major isomer 5a was isolated by recrystallization in 25% global yield (Scheme 3).

Other Pd-catalyzed C–C coupling reactions are feasible. The recently reported oxygen-promoted Pd(II) catalysis for crosscoupling of alkenylboronic compounds and olefins was attempted.<sup>15</sup> Compounds 3a + 3b were reacted with styrene in the presence of Pd(OAc)<sub>2</sub>/O<sub>2</sub> and Na<sub>2</sub>CO<sub>3</sub> in DMA for 3 h at room temperature, giving 1,3-dipropenylidenecyclobutane **6** (only one isomer was isolated) as a red solid in 15% global yield (Scheme 4).

Thus, although yields are moderate, the sequential ruthenium/ palladium catalysis allows us to introduce aryl or alkenyl groups to reach a new family of 1,3-dimethylenecyclobutanes.

Allene MeCH=C=CHB(pin) (pin = pinacol) was treated under the same conditions as **1**, giving a complex mixture of stereoisomers. The introduction of substituents on the allene carbon chain is known to modify both reactivity and selectivity.<sup>12</sup>

The ability of [Cp\*RuCl(COD)] **2** to dimerize allene **1** to give 1,3-dimethylenecyclobutane contrasts well with the codimerization of allene with unsaturated ketones by [CpRuCl(COD)]/CeCl<sub>3</sub>, which involves the substituted allene double bond.<sup>16</sup>

The observed allene dimerization regioselectivity benefits from both pinacol boronate and bulky  $C_5Me_5$  group nature. A direct access to **4a** from phenylallene dimerization catalyzed by **2** gives a mixture of **4a**, **4b**, and 1,2-diphenyl-3,4-dimethylenecyclobutane  $7^{17}$  (in 2:1:3 ratio), showing a lack of regioselectivity (head-tohead versus tail-to-tail coupling) with respect to allenyl boronate **1**.

To obtain a better regioselectivity with phenylallene dimerization, the use of a more sterically hindered ruthenium site was attempted (Scheme 4). The reaction of phenylallene in the presence of 10 mol %  $[Cp*Ru(PPh_3)(MeCN)_2][PF_6]$  (8) in DMF at 110 °C for 6 h gave the tail-to-tail coupling compound 7, isolated in 44% yield.

In conclusion, a new route to the previously inaccessible disubstituted 1,3-dimethylenecyclobutanes has been opened by sequential ruthenium/palladium catalysis from readily available materials by a simple experimental protocol. Ongoing studies aim to develop the functionalization of dimer **3** through the rich boron chemistry and search the access to new polymeric materials bearing rigid cyclobutane units.

**Acknowledgment.** We are grateful to the E.U. (COST D17) for support and for the "Marie Curie" Fellowship to E.B.

**Supporting Information Available:** Crystallographic data of **4a** and experimental procedures for all new compounds (CIF, PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

#### References

- (1) Dougherty, D. A. Acc. Chem. Res. 1991, 24, 88.
- (2) Snyder, G. J.; Dougherty, D. A. J. Am. Chem. Soc. 1989, 111, 3927.
- (3) (a) Zhang, D. Y.; Borden, W. T. J. Mol. Struct. 2000, 556, 151. (b) Misiolek, A. W.; Jackson, J. E. J. Am. Chem. Soc. 2001, 123, 4774. (c) Zhang, D. Y. J. Phys. Org. Chem. 2001, 14, 295. (d) Zhang, D. Y.; Borden, W. T. J. Org. Chem. 2002, 67, 3989.
- (4) (a) Rajca, A. Chem. Rev. 1994, 94, 871. (b) Miller, J. S.; Epstein, A. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 385. (c) Iwamura, H. Adv. Phys. Org. Chem. 1990, 26, 179. (d) Miller, J. S.; Epstein, A. J.; Reiff, W. M. Acc. Chem. Res. 1988, 21, 114.
- (5) (a) Snyder, G. J.; Dougherty, D. A. J. Am. Chem. Soc. 1985, 107, 1774.
  (b) Dowd, P.; Paik, Y. H. J. Am. Chem. Soc. 1986, 108, 2788.
- (6) Hill, B. T.; Squires, R. R. J. Chem. Soc., Perkin Trans. 1998, 2, 1027.
- (7) Horner, M.; Hünig, S. J. Am. Chem. Soc. 1977, 99, 6120. By photochemical [2 + 2] cyclodimerization of styrylpyridinium salts followed by deprotonation.
- (8) With 37% overall yield. Caserio, F. F.; Parker, S. H.; Piccolini, R.; Roberts, J. D. J. Am. Chem. Soc. 1958, 80, 5507.
- (9) (a) Blomquist, A. T.; Verdol, J. A. J. Am. Chem. Soc. 1956, 78, 109–112.
   (b) Borden W. T.; Reich, I. L.; Sharpe, L. A.; Weinberg, R. B. J. Org. Chem. 1975, 40, 2438.
- (10) Murakami, M.; Matsuda, T. Cycloaddition of Allenes. In *Modern Allene Chemistry*; Krause, N., Hashmi, A. S. K., Eds., Wiley-VCH: Weinheim, Germany, 2004; pp 727–815.
- (11) Braverman, S.; Freund, M.; Reisman, D.; Goldberg, I. *Tetrahedron Lett.* 1986, 1297–1300. Obtained by butyllithium-promoted dimerization of γ,γ-dimethylallenyl phenyl sulfone.
- (12) Saito, S.; Hirayama, K.; Kabuto, C.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 10776–10780.
- (13) (a) Le Paih, J.; Derien, S.; Bruneau, C.; Demerseman, B.; Toupet, L.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2001, 40, 2912. (b) Le Paih, J.; Monnier, F.; Dérien, S.; Dixneuf, P. H.; Clot, E.; Eisenstein, O. J. Am. Chem. Soc. 2003, 125, 11964.
- (14) MP2, DFT (B3PW91), and RHF theoretical methods involving the 6-311++G\*\* basic set: Rode, J. E.; Dobrowolki, J. C.; Jamroz, M. H.; Borowiak, M. A. Vib. Spectrosc. 2001, 25, 133.
- (15) Yoon, C. H.; Yoo, K. S.; Yi, S. W.; Mishra, R. K.; Jung, K. W. Org. Lett. 2004, 6, 4037.
- (16) Trost, B. M.; Pinkerton, A. B. J. Am. Chem. Soc. 1999, 121, 4068.
- (17) Blomquist, A. T.; Meinwald, Y. C. J. Am. Chem. Soc. 1960, 82, 3619.

JA051930R